Improvement of solid fuel combustion in calciners, oxygen injection and venturi

Cinar Ltd

M. Akritopoulos 31-05-2012

Summary

• Case study

• Venturi solution

• Oxygen injection

CASE STUDY

Cherat Cement Company

Base Case

Production	3270 tpd
Raw Meal inlet (tph) / Clinker factor	228 / 1.67
Meal in precalciner	LOI at 31.7%
Kiln Gases massflow (tph) (@ 1050 C)	80
Coal (tph)	10.5
Transport Air (for both burners) (Nm3/h) (@ 30 C)	4700
Tertiary Air (Nm3/h) (@ 825C)	65000

Aerodynamics - Mixing

Velocity Magnitude

Mixing Magnitude

Velocity magnitude with streamlines

Coal - Oxygen - Volatiles

CINAR LTD

1) Coal burner/s in the TA duct

INAR ITD

CINA

Increased heat regions - Explantion

The ignited coal particles, injected from TA, do not come closer to meal particles, which are pushed away due to TA momentum.

3) Top burners selected for the rest of the computations Cases PhIII : 50% of the fuel supplied at top through 2 selected burners from the 4 used for PhII-5.

to the horizontal is chosen.

Chipped Tires Injection

Tyres Burnout

Tyre chip trajectories in Upward Velocity field

VENTURI

Larger solid matter behaviour in calciner

Effects of Restriction to Velocity

Calciner 2 - Restriction avfter kiln hearth

The upwards velocity has increased from a range of 10-30 to a range of 35-50 m/s.

There are still areas of less than 45 m/s but further reduction of the area would not be practicable.

Improving the Tyre Chips Burnout

- <u>Case 1</u>:
 - As of Base Case configuration the orifice above TA is kept, but, a restriction is added at the lower riser region.
- <u>Case 2</u>:
 - Same as of Case 1 configuration with an improved Venturi smoothness.
- <u>Case 3</u>:
 - The Base Case orifice is removed. Instead a Venturi restriction is placed above the TA inlet (Venturi pipe radius R=1.15m).
- <u>Case 4</u>:
 - As of Case 3 configuration (Venturi pipe radius R=1.05m).
- <u>Case 5</u>:
 - As of Case 3 configuration (Venturi pipe radius R=0.95m).
- <u>Case 6</u>:
 - As of Case 3 configuration (Venturi pipe radius R=0.85m).

Calciner 3 - Improvements

Summary of Results							
Case	Base Case	C 1	C2	C3	C 4	C 5	C 6
Coal Burnout (%)	99	99	99	98	99	98	98
MBM Burnout (%)	92	91	93	91	91	92	92
Tyre Chips Burnout (%)	62	89	61	66	77	90	95
Calcination (%)	95	96	95	90	89	92	93
ExitO2 (%)	3.2	2.49	3.22	3.29	2.88	2.52	2.37
δP (mbar)	7.0	8.5	7.5	3.5	4.5	6.0	8.5
Exit Temperature (C)	920	982	924	983	981	967	965

OXYGEN INJECTION

Oxygen Injection

- Oxygen is injected for the following reasons:
 - To improve the fuel consumption
 - To reduce the mass of the gases when the pressure is a limiting factor.
- Problems:
 - High temperatures
 - Expensive
 - Needs optimisation

Temperature Profiles [C]

Modifications Conditions

	Base Case	Case 1	Case 2	Case 3
Coal (stph)	9.76	9.76	9.76	9.76
Petcoke (stph)	2.44	2.44	2.44	2.44
Transport Air for Fuel (stph) (@ 95F)	7.92	7.92	7.92	7.92
Swirl Air for Fuel (scfm) (@ 95F)	-	-	-	-
Axial Air for Fuel (scfm) (@ 95F)	-	-	-	-
Oxydant (90% O) (stph) (@ 95F)	-	1.5	2.25	3.0
Tertiary Air (stph) (@ 910C)	112	106.1	103.2	100.2

11% reduction of TA

$\frac{\text{Comparison of Cases O2}}{95\%} \qquad 95\%$

Explanation

Summary

- Stratification of the gases is something that is unavoidable in the majority of the calciners, as there is a lack of mixing mechanism away from the first TA inlet.
- Understanding the aerodynamics developed within the calciner is very important for improving traditional solid fuel combustion in the calciner, because with **correct positioning** of the burners it is very important to optimise the utilisation of the available oxygen.
- **Tire chips can fall through** to the kiln hearth and burn there under reducing conditions. An increase of the momentum over sufficient length. Although that is highly depending at the point of injection and the size of the chips, usually a Venturi raising the velocity to around 45 m/sec over a length of around 3-5 metres to ensure suspension of the larger size fraction of the tyre chips.
- The **injection of oxygen** can have little effect if its locationis away from the burners as it simply mixes with the tertiary air, far from the fuel particles. It can be optimised by either injecting it <u>closer to the fuel particles</u> such as through multi-channel burner or below TA duct with about 1/3 of fuel;
- Oxygen injection has slightly positive effect on NOx but it would be far more effective if oxygen is injected below TA in order to reduce NOx through 'Hot-reburn'.

Thank you

Any questions?

